

Development of Strategies and Methods for Monitoring for Algal Blooms and Occurrence of Toxic Cyanobacteria Using Next Generation qPCR and Phylochip Microarrays

Laura Webb, EPA Region 7

Project Team

- Laura Webb, Regina Klepikow, Steven Baker, Amy Shields, EPA Region 7
- Eric Villegas, Jingrang Lu ORD Exposure Methods and Measurements, National Exposure Research Laboratory, Microbial Exposure Branch
- Heath Mash ORD National Risk Management Research Laboratory, Water Systems Division, Drinking Water Systems Branch

Regional Applied research effort (RARE)

- Collaborative effort between and ORD office or lab and a regional office or lab
- Any high priority research need that the region has and that ORD has the expertise to address
- Each region nominates projects and selects, based on merit and funding, which ones move forward
- 2 year project in 5 regional lakes

Goals

- Purpose is to develop a good screening tool to determine if and what genus and or species of cyanobacteria are present and to determine if they are capable of producing toxins
- qPCR (R7) and the qPCR/RT-qPCR (ORD)
 - Using a commercial kit (CyanoDTec) will yield Total Cyanobacteria, Toxin Producing Genes (Microcystin/Nodularin, Saxitoxin, Cylindrospermopsin)
 - Pro: It's a commercially available kit that has gone through NIST equivalence testing and certification *product of Australia
 - Con: Not sure if the gene targets used are the same as those that reside here in the US and can cost \$60/sample to analyze
 - ORD using RT-gPCR
 - Pro: They have many studied methods, gene targets and research to verify the validity of the CyanoDTec
 - Con: They don't have a standardized protocol/method
 - Correlate molecular and biological results with chemical results

Phylochip and High Throughput Sequencing

- The high throughput sequencing will be used to build a whole genome map of the microbial community
- Alongside the Phylochip, we will look for any connections in the community composition and bloom formation/toxicity
- With PhyloChip we are also trying to evaluate the types of cyanobacteria from Phylum down to species.
 - Phylochip has over 800 cyanobacteria listed
- With the Phylochip we are also trying to develop the Microbial source tracking capabilities
- Work is still being done on this and not all data has been received and or interpreted

Sites

- Five lakes chosen within easy driving distance to STC
- Two lakes chosen to represent "reference" conditions, or less impacted area (Bethany, MO and 9 Eagles State Park, IA)
- Three lakes chosen to represent known HAB locations (Smithville Lake, MO, Milford and Lake Perry, KS)

Watershed Characteristics

							Dev,			Dev,		
Land Cover			1				Open		Dev, Med		asture/	
Туре	Open Water	Forest	Sh	ub/Scrub	Herbaceous	Wetlands	Space	Intensity	Intensity	Intensity	Hay	Crop
Nine Eagles												
Lake	6.79	78.37		0.08	2.08	0.43	4.54	0.56	0.00	0.0	5.92	1.24
Bethany Reservoir	11.11	20.88			2.07	1.92	5.12	1.89	0.00	0.0	50.79	6.22
Smithville Lake	6.12	9.70		0.33	0.82	1.97	4.98	1.52	0.19	0.04	38.64	35.57
Lake Perry	2.57	12.35		0.21	8.79	1.00	3.99	0.84	0.13	0.0	45.60	24.49
Milford	0.41	0.67		0.04	42.38	0.71	3.11	0.31	0.05	0.01	0.65	51.50

Sampling Plan

- Sampled each lake weekly on Tuesday for 26 weeks
- Surface water samples at 3 locations at each beach
- Composited grab samples for chemical
- Sterile grab samples for molecular, composited postsampling
- Phytoplankton net for taxonomy
- In situ using two YSI sondes

Analytes

- Chemical: Metals, PAH, pesticides, herbicides, pharmaceuticals, nutrients, anions, personal care products, hormones, endocrine disrupters, chlorophyll a
- Cyanotoxins: ELISA (MC and CYL), LCMSMS MC congeners (ORD)
- Biological: cyanobacteria, e coli
- Molecular: cyanobacteria DNA, community DNA, p-PCR
- In situ: DO, pH, turbidity, conductivity, temperature, chlorophyll a, phycocyanin

Molecular samples

- 2017
 - E.coli every 5th week
 - Phylochip every 5th week
 - ORD provided taxonomic sequencing, qPCR, and rt-qPCR
 - -R7 qPCR
- 2018
 - Weekly sampling for all molecular parameters
 - R7 qPCR and E.coli
 - ORD qPCR and rt-qPCR
 - Phylochip targeted sampling

Taxonomic Identification in Bethany

- Aphanizomenon
- Dolichospermum (Anabaena)
- Woronichina

Bethany Temperature and Toxin

Relationship

- Cylindrospermopsin found only in Bethany, and always at some level in Bethany
- Found 4 years in a row here
- Highest concentration of toxin found in cooler months
- Never above the EPA Draft water quality criteria/swimming advisory of 8 ug/L
- EPA Drinking Water Health Advisory (10-day)

	Bottle-fed infants and pre-school children	School-age children and adults
Cylindrospermopsin	0.7 μg/L	3 μg/L

Bethany and Copper

- Bethany has a significantly different concentration of copper
- Time-line of Bethany shows a drastic spike in copper – perhaps treatment with copper based algaecide
- Correlation of copper with lower chlorophyll a concentrations – killing off the algae
- Potential for lysing of cyanobacteria cells and releasing the toxin

DNA Sequencing

Relationship between Microcystin and DNA, RNA signals

CYAN Project USGS, NOAA, EPA, NASA

Smithville Lake - growing season 2017, continued 8/20-26 8/27-9/2 9/3-9 9/10-16 9/17-23 Don't know if you want to convert the values to If you click on the pixel in GIS with the information tool, it will give you a cells per milliliter but I did it for one of the number from 0-255, that number can be converted to a quantitative values. You can check my math - not sure I did value. To convert the digital number (DN) to cells/ml: it right. CI_cyano = cyanobacteria concentration or abundance Cl_cyano = 10^(DN/100)*0.0001 Based on these 18 images from last summer, Using the 209 value above in the 9/3-9 tile there were some weeks during each month (DN/100) = (209/100) = 2.09 when the eastern arm looked bad, and higher so....cyanobacteria abundance = 102.09 x 0.0001 = 0.012303 up in the lake it got pretty bad a few times, too. Cyano Abundance (cells/mL)= CI_cyano*1.0E+8 I didn't look at any weeks prior to 5/21 nor 0.012303 x 100,000,000 = 123,026 cell/mL anything after 9/23 yet.

Microcystin in Smithville Lake

Phycocyanin begins to increase in early July

CYAN smartphone app shows a signal

Detect Microcystin mid-July through September

Note: toxin concentration never near harmful levels

Lake Perry – growing season 2017 7/23-29 7/30-8/5 7/2-8 7/9-15 7/16-22 8/6-12 100 - WHO threshold

8/27-9/2

9/3-9

9/10-16

8/13-19

8/20-26

Lake Perry Microcystin congeners and MC ELISA (ng/L)

Next:

- Develop the RNA/DNA qPCR methods regionally
- Correlate chemistry, physical, biological and molecular data
- 2019/2020 RARE for Milford Lake

Special thanks to our sampling team!!!